
PermitUserLogin property
property PermitUserLogin: Boolean; { TVimSession }
If set to TRUE and either the LoginName or Password properties are empty then a dialog will pop up
asking for the users details.

ccMail Custom Controls
The ccMail Custom Controls (TVimSession ,TVimSendMessage, TVimInbox, and TVimAddressBook) are    a
collection of Delphi VCL files for sending and receiving messages using the VIM transport mechanism..

List of files

Installation

Copyright

Licence

Registration

Support

Disclaimer

Whats New

Future Plans

TVimAddressBook
This component provide access to the information help in the ccMail / Notes address book. An example of how to use
this object is contained in the DEMO3PRJ demonstration program.

See also :-

properties methods

Active

ActiveAddressBook

Session

run-time properties

AddressBookList

Gateways

Names

data structures and support classes

TVimAddress

TVimSession
The TVimSession class provides a channel to the ccMail engine as defined in the VIM (Vendor Independent
Messaging) API. It is used by the other components to provide access to various VIM functions..

See also:

properties methods

Active

LoginName

Password

PermitUserLogin

PostOfficePath

run-time only properties

VimError

ErrorMessage

ExtendedError

ApplicationError

TVimSendMessage
Used to create and send messages via ccMail.

See also:

Properties Methods

Attachments Send

BCC

CC

MessageTxt

MessageLines

Priority

Receipt

Recipients

Session

Subject

Active property
property Active : boolean; { TVimAddressBook }
Setting this to true causes the AddressBookList to be populated with the names of the available address books. The
component must be active before the details of individual addresses may be accessed.

 For ccMail the default address book is 'Directory' - additional address books are usually 'Public Mailing Lists' and
'Private Mailing Lists'.

Active property
property Active: Boolean; { TVimSession }
The Active property is used to query or set the state of TVimSession.   

Setting the property to True forces a login to ccMail to be attempted. If the login fails then the VimError property will
be set to a non-zero value and Active will be set to false.

Conversely setting the property to False logs out the current ccMail user.

See also:

VimError property

ErrorMessage property
property ErrorMessage: String; { TVimSession }
Contains the error message returned by the VIM engine whenever an error is encountered by either of   
TVimSession and TVimSendMessage .

See also

VimError

ExtendedError

ApplicationError

VimError property
property VimError: VimStatus; { TVimSession }
The VimError property is read-only and contains a non-zero value if the last ccMail activity failed.

See also

ErrorMessage

ExtendedError

ApplicationError

Password property
property Password: String; { TVimSession }
Must be a the valid ccMail password for the entity refered to by LoginName. property

Attachments property
property Attachments: TStrings { TVimSendMessage }
List of fully qualified file names for attachment to the message. If a file is not found the Send method will fail.

PostOfficePath property
property PostOfficePath: String; { TVimSession }
This property contains the fully qualified path of the ccMail post office to be used for this session. It is set
up    automatically when the Active property is set to true if no value has been entered.

LoginName property
property LoginName: String; { TVimSession }
The ccMail user from whom the message will be sent.

TVimInboxMsg
The following Delphi definition describes the class used to store additional details of a ccMail / Notes message within
a TVimInbox object. It is stored in the InboxContents TStrings property as the associated object.
type
 TVimInboxMsg = class(TObject)
 public
 property Date : TDateTime;
 property Priority : TVimPriority;
 property MsgUnRead : boolean;
 property From:string;
 end;

ExtendedError Property
property ExtendedError: String; { TVimSession }
Contains any additional error text returned by the VIM engine after a TVimSession or TVimSendMessage
method has failed..

See Also
ErrorMessage
ApplicationError
VimError

Licence Agreement
GeeSoft and D.M.Gee grant you, the end user, a non-exclusive single-user license to use the supplied
software program and all associated materials (the "SOFTWARE").    You may use the SOFTWARE on
one or more computers provided there is no possibility of it being used concurrently by more than one
person.    A separate licence is required for each concurrent user of the SOFTWARE.    Your use of the
SOFTWARE indicates your acceptance of the conditions of this agreement.

You can make any number of copies of the SOFTWARE for backup or archival purposes.

The SOFTWARE can be distributed royalty free provided it is only distributed in a compiled form as part
of an executable program.   

All modified versions of the SOFTWARE are also subject to this licence agreement and shall remain the
property of GeeSoft.

You may terminate this Licence Agreement at any time by destroying the SOFTWARE along with all
copies in any form.

ApplicationError Property
property ApplicationError: String; { TVimSession }
This will contain additional information specific to the TVimSession or TVimSendMessage method that
has failed.

List of files
The following is a list of files supplied as part of this package

VIMSESS.DCU TVimSession
VIMSEND.DCU TVimSendMessage
VIMINBOX.DCU TVimInbox
VIMADDBK.DCU TVimAddressBook
VIM.DCU Support routines
VLOGIN.DCU Required for the ccMail login/password form
VLOGIN.DFM The Login/Password form
VLOGIN.PAS The source for above

Do not replace the supplied VLOGIN.DCU, only VLOGIN.DFM
VABOUT.DCU About form
VABOUT.DFM

VIMVCL.HLP This file
VIMVCL.KWF Keyword file to link VIMVCL.HLP into the Delphi IDE

DEMO1PRJ.DPR Sample project for TVimSendMessage
DEMO1SRC.PAS
DEMO1SRC.DFM
DEMO2PRJ.DPR Sample project for TVimInbox
DEMO2SRC.PAS
DEMO2SRC.DFM
DEMO3PRJ.DPR Sample project for TVimAddressBook
DEMO3SRC.PAS
DEMO3SRC.DFM

Installation

Copyright
ccMail Copyright Lotus Development Corporation

Vendor Independent Messaging (VIM) Specification, Copyright 1991 Apple Computer, Inc., Borland
International, Inc., International Business Machines Corporation, Lotus Development Corporation, MCI
International, Inc., Novell, Inc., Oracle Corporation and WordPerfect Corporation. All rights reserved.

VIMSEND, VIMSESS, VIMINBOX and VIMADDBK are copyright by D.M.Gee

The SOFTWARE shall remain the property of GeeSoft and is protected by British copyright law and
international treaty provisions.

Send Method
function Send : Boolean; { TVimSendMessage }

Initiates the creation and sending of the message via ccMail. Returns false if the message could not be
sent.

See also
ErrorMessage
ExtendedError
ApplicationError
VimError

BCC Property
property BCC: TStrings; { TVimSendMessage }
List of ccMail addresses who will be Blind Carbon Copied on the message. If any of the supplied
addresses are invalid the Send method will fail.

CC Property
property CC: TStrings; { TVimSendMessage }
List of ccMail addresses who will be Carbon Copied on the message. If any of the supplied addresses are
invalid the Send method will fail.

Recipients Property
property Recipients: TStrings; { TVimSendMessage }
List of ccMail addresses who will receive the message. If any of the supplied addresses are invalid the
Send method will fail.

MessageTxt Property
property MessageTxt: String; { TVimSendMessage }
If this property is blank then the contents of MessageLines is sent otherwise the body text of the message
is formed from the MessageTxt value. It is sent without any special formatting

MessageLines Property
property MessageLines: TStrings; { TVimSendMessage }
If the MessageTxt property is blank then the contents of MessageLines is sent as the body text of the
message. It permits the sending of Memo fields.

NB Memory is allocated dynamically when passing the text to ccMail and it follows that extremely large
memo fields may cause an out of memory exception

Priority Property
property Priority: TVimPriority; { TVimSendMessage }
Permitted values are

Low

Normal

Urgent

Session Property
property Session: TVimSession; { TVimSendMessage }
The TVimSession object that will supply the channel to the VIM engine.

Subject Property
property Subject: String; { TVimSendMessage }
The Subject to appear in the heading of the message.

Receipt Property
property Receipt: Boolean; { TVimSendMessage }
If true then a receipt will be requested.

Registration
Distribution of registered versions of the software is via eMail only. I am unable to supply the software by
mail at this point in time.

There are three versions available

VIMVCL2R.ZIP $35 US This is version 2 runtime only (i.e. it does not include the source files)

VIMVCL2S.ZIP $100 USThis is version 2 runtime and full source

VIMVCL2U.ZIP $65 US This is version 2 source as an upgrade for registered users of the
VIMVCL runtime versions 1 and 2

You may register as follows :-

Online

Via the Compuserve Software Registration forum SWREG quoting

#9609 for VIMVCL2R.ZIP

#9610 for VIMVCL2U.ZIP

#9611 for VIMVCL2S.ZIP

By Credit Card ONLY

You can order with MC, Visa, Amex, or Discover from Public (software) Library by calling 800-2424-PsL or
713-524-6394 or by FAX to 713-524-6398 or by CIS Email to 71355,470. You can also mail credit card
orders to PsL at P.O.Box 35705, Houston, TX 77235-5705.

When ordering please quote the following :

PsL product id. # 14428

Whether you require the runtime/source/upgrade options

Your eMail address (failure to supply this means that your order cannot be fulfilled)

Please note that a handling charge of $1 US will be charged for orders placed via PsL.

THE ABOVE NUMBERS ARE FOR CREDIT CARD ORDERS ONLY. THE AUTHOR OF THIS PROGRAM
CANNOT BE REACHED AT THESE NUMBERS.

Any questions about the status of the shipment of the order, refunds, registration options, product details,
technical support, volume discounts, dealer pricing, site licenses, non-credit card orders, etc, must be
directed to the author via eMail.

To insure that you get the latest version, PsL will notify us the day of your order and we will ship the product
directly to you."

Support
You can contact the author

via CIS mail on 100047,123

the Internet on 100047.123@compuserve.com or mikeg@romplaza.demon.co.uk

by telephone in the UK during working hours on 01489-787709

TVimInbox
This component provides access to messages within the inbox. It must be linked to an active TVimSession
component, have its own Active property set to true and either the ScanInboxOnActivate set to true or the developer
must call the ScanInbox fucntion.

properties methods / fucntions / procedures

Active GetMessage

MsgFilter SaveAttachments

ScanInboxOnActivate ScanInbox

Session deleteMessage

VimStatus MoveMessageToFolder

SetMessageRead

run-time properties

Attachments

BCC

CC

Date

From

InboxContents

MessageLines

NewMessages

Priority

Subject

ToNames

UnreadMessages

data structures and support classes

TVimAttachment

TVimInboxMsg

TVimMsgFilter

Session property
property Session : TVimSession; { TVimAddressBook }
The TVimSession object that will supply the channel to the VIM engine.

ActiveAddressBook property
property ActiveAddressBook : String; { TVimAddressBook }
Setting this to a valid address book name causes the details of the addressees to be loaded into the Names and
Gateways properties.

Names property
property Names : TStrings; { TVimAddressBook }
Holds the names from the currently active address book. In addition to the addressee name additional data may be
present in the objects property of the String List - this data is stored in an object of type TVimAddress

data structures and support classes

TVimAddress

Gateways property
property Gateways : TStrings; { TVimAddressBook }
Holds details of the Post Offices and Gateways encountered when reading details from the currently active address
book.

It is primarily intended for developers who wish to develop advanced address lookup functions.

AddressBookList property
property AddressBookList : TStrings; { TVimAddressBook }
Holds details of the available address books. It is populated when the Active property is set to true.

setActiveAddressBook

TVimAddress
The following Delphi definition describes the class used to store additional details of a ccMail address within a
TVimAddressBook object. It is stored in the Names TStrings property as the associated object.
type
 TVimAddress = class(TObject)
 public
 property Comments:string;
 property PostOffice:string;
 property FullAddress:string;
 function HasChildren:boolean;
 function isGroup:boolean;
 end;

Comments property
property Comments : String; { TVimAddress }
The free format comments text held within the ccMail / Notes address book for the associated address.

PostOffice property
property PostOffice : String; { TVimAddress }
This is a derived field containing the 'post office' portion of the full address held within the ccMail / Notes address
book. If the full address is 'Mike Gee AT HQ-PO' then the PostOffice property will be 'HQ-PO'. This is primarily for
those who wish to write their own address book display routines.

FullAddress property
property FullAddress : String; { TVimAddress }
Holds the full address as held within the ccMail / Notes address book. This will usually be in the format 'Mike Gee AT
HQ_PO'.

This is the value used by VIM when addressing messages.

HasChildren function
function HasChildren : boolean; { TVimAddress }
Indicates whether the address book entry is a post-office, gateway or group which points to individual user names /
addresses.

isGroup function
property PostOffice : String; { TVimAddress }
Returns true if the address book entry is a mailing-list and therefore may point to additional individual user names /
addresses.

Disclaimer
Limited Warranty
The SOFTWARE is distributed and licensed "AS IS".    GeeSoft and D.M Gee specifically disclaim all
other warranties, express or implied, including but not limited to, implied warranties of merchantability and
fitness for a particular purpose, with regard to the SOFTWARE.

Liability
In no event shall GeeSoft or D.M Gee be responsible for any damages whatsoever (including but not
limited to, damages for loss of business profits, business interruption, loss of business information, or any
other pecuniary loss) arising out of the use or inability to use this product.

Date property
property Date: TDateTime; { TVimInboxMsg }
The date the message was despatched.

Priority property
property Priority: TVimPriority; { TVimInboxMsg }
This is the priority of the message.

MsgUnRead property
property MsgUnread: Boolean; { TVimInboxMsg }
This is true if the user has not accessed the message.

From property
property From : String; { TVimInboxMsg }
The name of the person who sent the message.

InboxContents property
property InboxContents: TStrings; { TVimInbox }
This contains details of the messages within the currently activeAddressBook. The messages may have been
restricted to unread messages if the msgFilter property has been set to unreadMessages.

The strings array holds the subject of the individual messages and the associated objects array holds all additional
information in a TVimInboxMsg object.

MsgFilter property
property MsgFilter: TVimMsgFilter; { TVimInbox }
This is used to restrict the messages returned by a call to the scanInbox function.

ScanInboxOnActivate
property ScanInboxOnActivate: Boolean; { TVimInbox }
If set to true the inbox will be read using the scanInbox function every time the component is activated,

Session
property Session: TVimSession; { TVimInbox }
The TVimSession object that will supply the channel to the VIM engine.

Active property
property Active: Boolean; { TVimInbox }
Setting this to true causes the inbox to be opened in preparation for the reading of messages. If the
scanInboxOnActivate property is set to true then the scanInbox function will be called.

If the session associated with the component is not active then any attempt to set Active to true will fail.

VimStatus
property VimStatus : Boolean; { TVimInbox }
This is updated by the functions to reflect their completion status. It provides an alternative method of determining if a
function was successfull.

Attachments property
property Attachments: TStrings; { TVimInbox }
This contains the names of message attachments in the associated strings array and the size of the attachment as a
TVimAttachment in the assocoated objects array. It is populated by calls to the getMessage function.

BCC property
property BCC: TStrings; { TVimInbox }
This contains the details of the various addressees in the Blind Carbon Copy list associated with the current
message. It is populated by a successful call to the getMessage function.

CC property
property CC: TSrings; { TVimInbox }
This contains the details of the various addressees in the Carbon Copy list associated with the current message. It is
populated by a successful call to the getMessage function.

Date property
property Date: TDateTime; { TVimInbox }
This is the date the message was sent.

From property
property From: String; { TVimInbox }
This is the author of the current message as returned by a call to the getMessage function.

MessageLines property
property MessageLines : TStrings; { TVimInbox }
This hold the body text of the current message as returned by a call to the getMessage function.

NewMessages property
property NewMessages: Boolean; { TVimInbox }
This returns the number of new messages in the inbox and is updated each time a call is made to the scanInbox
function.

Priority property
property Priority : TVimPriority; { TVimInbox }
This is the priority of the current message as returned by a successfull call to the getMessage function.

Subject property
property Subject : String; { TVimInbox }
This is the subject of the current message as returned by a call to the getMessage fucntion.

ToNames property
property ToNames: TStrings; { TVimInbox }
This is the list of addressees contained in the To portion of the current message as returned by a call to the
getMessage function.

UnreadMessages property
property UnreadMessages: integer; { TVimInbox }
This returns the number of unread messages in the inbox as returned by a call to the scanInbox function. The value is
not affected by the state of the msgFilter property.

GetMessage
function GetMessage(msgNum : integer) : Boolean; { TVimInbox }
This reads the message defined by msgNum which must point to a valid item within inboxContents. Upon successful
completion the following properties will have been populated with data from the specified message:-

Attachments

BCC

CC

Date

From

MessageLines

Priority

Subject

ToNames

SaveAttachments
function SaveAttachments(attachment:integer; path:string): Boolean; { TVimInbox }
This will save the attachment specified by attachment into the path pointed to by path. Attachment must specify a
valid entry within the Attachments property which will have been set up by a previously successful call to the
getMessage function.

NB Under certain circumstances the size of the file stored will not match that specified in the associated
TVimAttachment object as VIM appears to include trailing character past the EOF delimeter for text files.

ScanInbox
function ScanInbox: Boolean; { TVimInbox }
This scans the inbox and populates the inboxContents with details of the available messages. The scan may be
constrained by the value of msgFilter.

There must have been a successfull call to ScanInbox prior to any calls to the getMessage function.

TVimPriority

TVimMsgFilter type
The following Delphi definition describes the type used to define the filtering of messages read from the Inbox by the
ScanInbox function. It is defined in TVimInbox and is not used by any other units.
Type
 TVimMsgFilter = (UnReadMessages,AllMessages);
end;

TVimAttachment
The following Delphi definition describes the class used to store additional details of a ccMail / Notes message
attachment within a TVimInbox object. It is stored in the Attachments TStrings property as the associated object.
Type
 TVimAttachment = class(TObject)
 public
 property Size : longInt;
 end;

Whats New
The following methods have been added to TVimInbox

deleteMessage

MoveMessageToFolder

SetMessageRead

A source is included for the login form so that the DFM file may be customized.

TVimAddressbook now correctly recognises local user entries in the address book.

Future Plans
An additional address book component with a reduced memory overhead.

VIM addressbook aware listbox, combobox and stringgrid components which will operate independently
of the current TVimAddressBook requiring a much reduced memory overhead.

Implementation of true Delphi exception events.

A 32-bit version compatible with the current Lotus beta 32-bit VIM

Lotus Notes compatibility

Access to folders.

Dynamic rather than Delphi controlled loading of VIM.DLL which will do away with the necessity for the
DLLs to be on the path or in the Windows directory.

Addressing to remote gateways such as FAX and Internet servers

DeleteMessage
function DeleteMessage(msgNum:integer): Boolean; { TVimInbox }
This deletes the specified message from the inbox.

If the message is currently open as the result of a call to the getMessage function then it is closed. The message is
deleted from inboxContents

MoveMessageToFolder
function MoveMessageToFolder(msgNum:integer; sFolder:string) : Boolean; { TVimInbox }
This moves the specified message from the inbox to the specified folder.

If the specified folder does not exist it is created.

If the message is currently open as the result of a call to the getMessage function then it is closed. The message is
deleted from inboxContents

SetMessageRead
function SetMessageRead(msgNum:integer): Boolean; { TVimInbox }
This sets the status of the specified message to read.

Installation
Warning : VIM.DLL, MAILENG.DLL and MEMMAN.DLL must be present either in one of the directories specified in

your path statement or in your Windows directory otherwise the components will not function correctly.

The software :

VIMSESS.DCU TVimSession
VIMSEND.DCU TVimSendMessage
VIMINBOX.DCU TVimInbox
VIMADDBK.DCU TVimAddressBook
VIM.DCU Support routines
VLOGIN.DCU Required for the ccMail login/password form
VLOGIN.DFM The Login/Password form
VABOUT.DCU About form
VABOUT.DFM

Copy the files to your VCL directory and install VIMSESS.DCU, VIMSEND.DCU, VIMINBOX.DCU and
VIMADDBK.DCU using Options | Install Components from the main IDE menu. They will appear on
the component palette in a section called ccMail.

Help files

VIMVCL.HLP This file
VIMVCL.KWF Keyword file to link VIMVCL.HLP into the Delphi IDE

Copy VIMVCL.HLP to your Delphi programs directory (typically DELPHI\BIN); copy VIMVCL.KWF to
your Delphi help directory (typically DELPHI\HELP) and run the HELPINST utility.

